论文标题

ESAD:内窥镜外科医生动作检测数据集

ESAD: Endoscopic Surgeon Action Detection Dataset

论文作者

Bawa, Vivek Singh, Singh, Gurkirt, KapingA, Francis, Skarga-Bandurova, Inna, Leporini, Alice, Landolfo, Carmela, Stabile, Armando, Setti, Francesco, Muradore, Riccardo, Oleari, Elettra, Cuzzolin, Fabio

论文摘要

在这项工作中,我们旨在提高手术助理机器人的有效性。我们打算通过使助理机器人了解外科医生的行动来使助手机器人更安全,以便采取适当的辅助行动。换句话说,我们旨在解决内窥镜视频中外科医生动作检测的问题。为此,我们在现实世界内窥镜视频中介绍了一个具有挑战性的数据集,以供外科医生动作检测。根据外科医生的反馈选择行动课,并由医疗专业人员注释。给定视频框架,我们围绕手术工具绘制边界框,该工具正在执行动作并将其标记为动作标签。最后,我们基于OB映射检测的最新进展,介绍了框架级的动作检测基线模型。我们的新数据集中的结果表明,我们提出的数据集为将来的方法提供了足够的有趣挑战,并且可以在内窥镜视频中对外科医生动作检测进行强大的基准测试。

In this work, we take aim towards increasing the effectiveness of surgical assistant robots. We intended to make assistant robots safer by making them aware about the actions of surgeon, so it can take appropriate assisting actions. In other words, we aim to solve the problem of surgeon action detection in endoscopic videos. To this, we introduce a challenging dataset for surgeon action detection in real-world endoscopic videos. Action classes are picked based on the feedback of surgeons and annotated by medical professional. Given a video frame, we draw bounding box around surgical tool which is performing action and label it with action label. Finally, we presenta frame-level action detection baseline model based on recent advances in ob-ject detection. Results on our new dataset show that our presented dataset provides enough interesting challenges for future method and it can serveas strong benchmark corresponding research in surgeon action detection in endoscopic videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源