论文标题

在支持学习的控制器中对对抗性攻击的鲁棒性

Robustness to Adversarial Attacks in Learning-Enabled Controllers

论文作者

Xiong, Zikang, Eappen, Joe, Zhu, He, Jagannathan, Suresh

论文摘要

已知在网络物理系统(CPS)中使用的学习控制器容易受到对抗攻击的影响。这种攻击表现为对控制器环境对其行为产生的状态的扰动。我们认为状态扰动涵盖了各种各样的对抗性攻击,并描述了发现对抗状态的攻击方案。为了有用,这些攻击必须是自然的,可以合理地期望控制器产生有意义的响应。我们认为基于盾牌的防御能力是在这种扰动中提高控制器鲁棒性的一种手段。我们的防御策略使我们能够将控制器和环境视为具有未知动态的黑盒。我们提供了一种两阶段的方法来构建这种防御,并通过对现实的连续控制域进行的一系列实验(例如F16飞机的导航控制环和人形机器人机器人的运动控制系统)来显示其有效性。

Learning-enabled controllers used in cyber-physical systems (CPS) are known to be susceptible to adversarial attacks. Such attacks manifest as perturbations to the states generated by the controller's environment in response to its actions. We consider state perturbations that encompass a wide variety of adversarial attacks and describe an attack scheme for discovering adversarial states. To be useful, these attacks need to be natural, yielding states in which the controller can be reasonably expected to generate a meaningful response. We consider shield-based defenses as a means to improve controller robustness in the face of such perturbations. Our defense strategy allows us to treat the controller and environment as black-boxes with unknown dynamics. We provide a two-stage approach to construct this defense and show its effectiveness through a range of experiments on realistic continuous control domains such as the navigation control-loop of an F16 aircraft and the motion control system of humanoid robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源