论文标题

图形神经网络的数据增强

Data Augmentation for Graph Neural Networks

论文作者

Zhao, Tong, Liu, Yozen, Neves, Leonardo, Woodford, Oliver, Jiang, Meng, Shah, Neil

论文摘要

数据增强已被广泛用于改善机器学习模型的普遍性。但是,相对较少的工作研究数据增强图。这在很大程度上是由于图形的复杂,非欧国人的结构限制了可能的操纵操作。视觉和语言中常用的增强操作没有图形的类似物。我们的工作研究在改善半监督节点分类的背景下,图形的图神经网络(GNN)的图形数据增强。我们讨论了图形数据增强图的实用和理论动机,考虑因素和策略。我们的工作表明,神经边缘预测因子可以有效地编码类别的双元结构,以促进给定图形结构中的类内部边缘和降低类间边缘,而我们的主要贡献引入了GAUG图数据增强框架,该框架利用这些见解来提高基于GNN的基于GNN的通过Edge预测进行基于GNN的节点分类。多个基准测试的广泛实验表明,通过仪表进行的增强可改善GNN架构和数据集的性能。

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源