论文标题
日历图神经网络,用于建模时空用户行为中的时间结构
Calendar Graph Neural Networks for Modeling Time Structures in Spatiotemporal User Behaviors
论文作者
论文摘要
用户行为建模对于人口统计属性预测,内容建议和目标广告等工业应用很重要。现有方法将行为日志表示为一系列采用项目,并找到顺序模式。但是,行为日志中的具体位置和时间信息,反映了与空间维度的动态和周期性模式,可用于对用户进行建模和预测其特征。在这项工作中,我们提出了一个基于图形神经网络的新型模型,用于从时空行为数据中学习用户表示。行为日志包括一系列会话;会议有一个位置,开始时间,结束时间和一系列采用项目。我们的模型架构结合了两个网络结构。一个是三方网络的项目,会话和位置。另一个是小时,周和工作日节点的分层日历网络。它首先通过三方网络汇总了位置的嵌入和项目嵌入会话嵌入,然后通过日历结构从会话嵌入的用户嵌入。用户嵌入可以保留各种周期性的空间模式和时间模式(例如,每小时,每周和工作日模式)。它采用了注意机制来对用户行为中多种模式之间的复杂相互作用进行建模。在真实数据集上的实验(即,在移动应用程序中单击新闻文章)显示我们的方法的表现优于预测缺失人口属性的强大基准。
User behavior modeling is important for industrial applications such as demographic attribute prediction, content recommendation, and target advertising. Existing methods represent behavior log as a sequence of adopted items and find sequential patterns; however, concrete location and time information in the behavior log, reflecting dynamic and periodic patterns, joint with the spatial dimension, can be useful for modeling users and predicting their characteristics. In this work, we propose a novel model based on graph neural networks for learning user representations from spatiotemporal behavior data. A behavior log comprises a sequence of sessions; and a session has a location, start time, end time, and a sequence of adopted items. Our model's architecture incorporates two networked structures. One is a tripartite network of items, sessions, and locations. The other is a hierarchical calendar network of hour, week, and weekday nodes. It first aggregates embeddings of location and items into session embeddings via the tripartite network, and then generates user embeddings from the session embeddings via the calendar structure. The user embeddings preserve spatial patterns and temporal patterns of a variety of periodicity (e.g., hourly, weekly, and weekday patterns). It adopts the attention mechanism to model complex interactions among the multiple patterns in user behaviors. Experiments on real datasets (i.e., clicks on news articles in a mobile app) show our approach outperforms strong baselines for predicting missing demographic attributes.