论文标题

可变基因的功能模块:利用渗透来分析嘈杂,高维数据

Functional modules from variable genes: Leveraging percolation to analyze noisy, high-dimensional data

论文作者

Werner, Steffen, Rozemuller, W Mathijs, Ebbing, Annabel, Alemany, Anna, Traets, Joleen, van Zon, Jeroen S., van Oudenaarden, Alexander, Korswagen, Hendrik C., Stephens, Greg J., Shimizu, Thomas S.

论文摘要

尽管测量的进步现在可以进行广泛的基因活性调查(许多样品中的大量基因),但这些数据的解释通常会被噪声混淆 - 由于生物学和实验起源的变化,在样品中的表达计数可能会差异很大。对扰动方法的补充,我们通过分析采样种群中的常规变异来提取功能相关的基因组。为了区分生物学上有意义的模式与无法解释的噪声,我们专注于相关的变化,并开发出一种新型的基于密度的聚类方法,该方法利用了渗透性转变,通常以随机的,不相关的数据而产生。我们将方法应用于两个对比的RNA测序数据集,这些数据集采样了个体变异 - 跨裂变酵母的单个细胞和秀丽隐杆线虫蠕虫的全动物的单个细胞 - 并在揭示了各种生物学起源的相关基因簇,包括细胞循环相,开发/再生能力,组织特异性功能以及饲料历史方面证明了强大的适用性和多功能性。我们的技术利用了嘈杂的高维数据的通用特征,并且适用于基因表达,可用于在噪声存在下采样种群级别可变性的丰富数据。

While measurement advances now allow extensive surveys of gene activity (large numbers of genes across many samples), interpretation of these data is often confounded by noise -- expression counts can differ strongly across samples due to variation of both biological and experimental origin. Complimentary to perturbation approaches, we extract functionally related groups of genes by analyzing the standing variation within a sampled population. To distinguish biologically meaningful patterns from uninterpretable noise, we focus on correlated variation and develop a novel density-based clustering approach that takes advantage of a percolation transition generically arising in random, uncorrelated data. We apply our approach to two contrasting RNA sequencing data sets that sample individual variation -- across single cells of fission yeast and whole animals of C. elegans worms -- and demonstrate robust applicability and versatility in revealing correlated gene clusters of diverse biological origin, including cell cycle phase, development/reproduction, tissue-specific functions, and feeding history. Our technique exploits generic features of noisy high-dimensional data and is applicable, beyond gene expression, to feature-rich data that sample population-level variability in the presence of noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源