论文标题

平面美学曲线的曲率

Curvature of planar aesthetic curves

论文作者

Cantón, A., Fernández-Jambrina, L., Vázquez-Gallo, M. J.

论文摘要

法林提出了一种设计具有单调曲率和扭转的曲线的方法。由于其美学形状,此类曲线在设计上是相关的。该方法依靠将矩阵M应用于曲线控制多边形的第一个边缘,以便通过迭代获得其余边缘。使用这种方法,提供了矩阵$ M $的足够条件,这导致了A类曲线的定义,从而概括了Mineur等人对平面曲线的先前结果,其中M是扩张和旋转的组成。但是,CAO和Wang在这种情况下显示了反例。在本文中,我们重新审视了Farin的想法,即使用细分算法将曲线的每个点在曲线上将曲率与曲率联系起来,以便在平面曲线的曲率上产生封闭式的曲率,以根据Matrix M的特征和种子载体的曲线来为曲线,对CRVE的曲线进行对照,而对控制Polygon的曲线。此外,我们提供了新的条件,以产生单调曲率的平面曲线。主要区别在于,我们不需要在曲线细分下保留对特征值的条件。这有助于给出现有结果的统一推导,并在平面案例中获得更一般的结果。

Farin proposed a method for designing Bezier curves with monotonic curvature and torsion. Such curves are relevant in design due to their aesthetic shape. The method relies on applying a matrix M to the first edge of the control polygon of the curve in order to obtain by iteration the remaining edges. With this method, sufficient conditions on the matrix $M$ are provided, which lead to the definition of Class A curves, generalising a previous result by Mineur et al for plane curves with M being the composition of a dilatation and a rotation. However, Cao and Wang have shown counterexamples for such conditions. In this paper, we revisit Farin's idea of using the subdivision algorithm to relate the curvature at every point of the curve to the curvature at the initial point in order to produce a closed formula for the curvature of planar curves in terms of the eigenvalues of the matrix M and the seed vector for the curve, the first edge of the control polygon. Moreover, we give new conditions in order to produce planar curves with monotonic curvature. The main difference is that we do not require our conditions on the eigenvalues to be preserved under subdivision of the curve. This facilitates giving a unified derivation of the existing results and obtain more general results in the planar case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源