论文标题
SN 1006中宇宙射线电子光谱的进化和观察性特征
Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006
论文作者
论文摘要
据信超新星残留物(SNR)是银河宇宙射线(CRS)的来源。 SNR冲击加速了Cr质子和电子,这些质子和电子通过其同步加速器和$γ$ -Ray的发射来揭示对非热物理学的关键见解。残留的SN 1006是一个理想的粒子加速实验室,因为从无线电到$γ$ rays的所有电磁波长中都观察到它。我们执行三维(3D)磁性流动力学(MHD)模拟,其中包括CR质子并遵循CR电子光谱。通过匹配无线电,X射线和$γ$ - 砂中SN 1006的观察到的形态和非热谱,我们可以获得对CR电子加速度和磁场扩增的新见解。 1。我们表明,混合的Leptonic-Hadronic模型负责$γ$ ray辐射:而Leptonic Inverse-Compton发射和HADRONIC PION-DECAY-DECAY-DECAY-DECAIL排放在Fermi观察到的GEV Energies上同样有助于TEV Envies,通过对Air Cherenkov telescopes进行成像,观察到的Tev Energies是由Haverronicaline in hospronicalines Inspronicationalline-Haverronicaline domencopes domencopes的。 2。我们表明,对于CR电子而言,优选的Quasi平行加速度(即,当冲击以狭窄的角度与上游磁场传播时),并且至少将射线发射GEV电子的电子加速度效率抑制至少被抑制。这排除了当前的一维等离子体粒子中冲击加速度的粒子粒子模拟到现实的SNR条件。 3。为了匹配径向发射轮廓和$γ$ - 射线频谱,我们需要一个体积填充,湍流放大的磁场,并且在直接的后震后区域中,铃铛放大的磁场受到了阻尼。我们的工作将微型等离子体物理模拟连接到SNR的规模。
Supernova remnants (SNRs) are believed to be the source of Galactic cosmic rays (CRs). SNR shocks accelerate CR protons and electrons which reveal key insights into the non-thermal physics by means of their synchrotron and $γ$-ray emission. The remnant SN 1006 is an ideal particle acceleration laboratory because it is observed across all electromagnetic wavelengths from radio to $γ$-rays. We perform three-dimensional (3D) magnetohydrodynamics (MHD) simulations where we include CR protons and follow the CR electron spectrum. By matching the observed morphology and non-thermal spectrum of SN 1006 in radio, X-rays and $γ$-rays, we gain new insight into CR electron acceleration and magnetic field amplification. 1. We show that a mixed leptonic-hadronic model is responsible for the $γ$-ray radiation: while leptonic inverse-Compton emission and hadronic pion-decay emission contribute equally at GeV energies observed by Fermi, TeV energies observed by imaging air Cherenkov telescopes are hadronically dominated. 2. We show that quasi-parallel acceleration (i.e., when the shock propagates at a narrow angle to the upstream magnetic field) is preferred for CR electrons and that the electron acceleration efficiency of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed at least by a factor ten. This precludes extrapolation of current one-dimensional plasma particle-in-cell simulations of shock acceleration to realistic SNR conditions. 3. To match the radial emission profiles and the $γ$-ray spectrum, we require a volume-filling, turbulently amplified magnetic field and that the Bell-amplified magnetic field is damped in the immediate post-shock region. Our work connects micro-scale plasma physics simulations to the scale of SNRs.