论文标题

在分层域中的图灵图案

Turing Patterning in Stratified Domains

论文作者

Krause, Andrew L., Klika, Václav, Halatek, Jacob, Grant, Paul K., Woolley, Thomas E., Dalchau, Neil, Gaffney, Eamonn A.

论文摘要

跨分层介质的反应扩散过程出现在几个科学领域,例如琼脂底物上的图案形成大肠杆菌,发育中的表皮 - 间质耦合以及细胞极化中的对称性破坏。我们为双层反应扩散系统开发了建模框架,并将其与一系列现有模型相关联。我们得出了扩散驱动的不稳定性的条件,即在最简单的非平凡环境中,一个域具有标准反应扩散系统,而其他允许扩散的空间均匀平衡类似于经典条件的Turing不稳定性。由于这两个区域之间的横向耦合,因此无法应用用于计算拉普拉斯的特征函数的标准技术,因此我们提出了一种直接计算分散关系的替代方法。我们将不稳定性条件与完整的数值模拟进行了比较,以证明几何图形和耦合参数对图案的影响,并探索各种实验中与实验相关的渐近渐近方案。在第一个领域合适的型号的制度中,我们恢复了对标准图灵条件的简单调制,并发现仅扩散域的广泛影响是降低系统形成模式的能力。我们还展示了这种耦合对模式形成的复杂影响。例如,我们在几何和耦合参数方面表现出模式形成不稳定性的非单调性,并突出了一个域中动力学之间的非平凡相互作用与另一个域之间的扩散。这些结果对于在诸如图灵模式的合成工程等应用中的设计选择方面非常有价值,并且对于理解分层培养基在调节发展生物学及其他地区的模式形成过程中的作用。

Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarisation. We develop a modelling framework for bi-layer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally-relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源