论文标题
探索开放式域适应的类别 - 不足的群集
Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation
论文作者
论文摘要
近年来,无监督的领域适应受到了极大的关注。假设源和目标域共享完全相同的类别,那么大多数现有作品都解决了封闭式方案。在实践中,尽管如此,目标域通常包含源域中看不见的类样本(即未知类)。域的适应从封闭设置的扩展到这种开放式情况并不微不足道,因为未知类别的目标样本预计不会与源头保持一致。在本文中,我们通过扩大最新的域适应技术(自我启动)来解决这个问题,并在目标域中使用类别 - 不合稳定的群集。具体而言,我们与类别不稳定簇(SE-CC)一起介绍了自我调整 - 一种新型的体系结构,该架构以特定于目标域特有的类别 - 不可能群体的额外指导来引导域的适应性。这些聚类信息提供了特定于域的视觉提示,从而促进了封闭设置和开放式场景的自我同组的概括。从技术上讲,首先在所有未标记的目标样本上执行聚类以获得类别不固定的群集,从而揭示了目标域特有的基本数据空间结构。集群分支的大写,以确保通过将簇上的估计分配分布与每个目标样本的固有群集分布相匹配,从而确保提供了基础结构。此外,SE-CC通过最大化增强了学习的表示形式。在办公室和VISDA数据集中进行了广泛的实验,以进行开放式和封闭设置的适应性,并在与最新方法进行比较时报告了较高的结果。
Unsupervised domain adaptation has received significant attention in recent years. Most of existing works tackle the closed-set scenario, assuming that the source and target domains share the exactly same categories. In practice, nevertheless, a target domain often contains samples of classes unseen in source domain (i.e., unknown class). The extension of domain adaptation from closed-set to such open-set situation is not trivial since the target samples in unknown class are not expected to align with the source. In this paper, we address this problem by augmenting the state-of-the-art domain adaptation technique, Self-Ensembling, with category-agnostic clusters in target domain. Specifically, we present Self-Ensembling with Category-agnostic Clusters (SE-CC) -- a novel architecture that steers domain adaptation with the additional guidance of category-agnostic clusters that are specific to target domain. These clustering information provides domain-specific visual cues, facilitating the generalization of Self-Ensembling for both closed-set and open-set scenarios. Technically, clustering is firstly performed over all the unlabeled target samples to obtain the category-agnostic clusters, which reveal the underlying data space structure peculiar to target domain. A clustering branch is capitalized on to ensure that the learnt representation preserves such underlying structure by matching the estimated assignment distribution over clusters to the inherent cluster distribution for each target sample. Furthermore, SE-CC enhances the learnt representation with mutual information maximization. Extensive experiments are conducted on Office and VisDA datasets for both open-set and closed-set domain adaptation, and superior results are reported when comparing to the state-of-the-art approaches.