论文标题

用于在辐照蜘蛛伴侣表面重新分布热的模型

A model for redistributing heat over the surface of irradiated spider companions

论文作者

Voisin, G., Kennedy, M. R., Breton, R. P., Clark, C. J., Mata-Sánchez, D.

论文摘要

蜘蛛脉冲星是二进制系统,其中包含一个能量毫秒的脉冲星,该脉冲星强烈照射了一个紧密绕的低质量伴侣。对同伴的光学曲线进行建模对于研究二进制的轨道特性至关重要,包括测定脉冲星质量,表征了脉冲星风和恒星本身。我们的目的是概括传统的直接加热模型,从而通过在外部恒星包膜内的扩散和对流引入热量重新分布,从而将脉冲星的能量沉积到恒星​​包膜中。我们将辐照的恒星包膜近似为二维外壳。这使我们能够提出一个有效的节能方程,可以以降低的计算成本来解决。然后,我们在\ texttt {icarus}软件中实现了此模型,并使用证据抽样来确定PSR J2215+5135的红带伴侣的光曲线最有可能的对流和扩散定律。重新分布效应集中在脉冲星辐射的终结器线附近,并可能产生明显的冷点和冷点。在对PSR J2215+5135测试的模型中,我们发现所有具有热重新分布的模型都比对称直接加热更有可能。最合适的重新分布模型涉及扩散以及均匀旋转的信封。但是,我们警告说,所有模型仍然会呈现出严重的系统效应,并且来自脉冲星的预时,光谱和距离的先验知识是确定最准确的重新分布定律的关键。我们提出了直接加热框架的扩展,该框架允许探索各种热量再分配效果。未来的工作对于确定第一原则的相关法律和使用互补观察的经验是必要的。

Spider pulsars are binary systems containing an energetic millisecond pulsar that intensely irradiates a closely orbiting low-mass companion. Modelling their companion's optical light curves is essential to the study of the orbital properties of the binary, including the determination of the pulsar mass, characterising the pulsar wind and the star itself. We aim to generalise the traditional direct heating model of irradiation, whereby energy deposited by the pulsar wind into the stellar envelope is locally re-emitted, by introducing heat redistribution via diffusion and convection within the outer stellar envelope. We approximate the irradiated stellar envelope as a two-dimensional shell. This allows us to propose an effective equation of energy conservation that can be solved at a reduced computational cost. We then implement this model in the \texttt{Icarus} software and use evidence sampling to determine the most likely convection and diffusion laws for the light curve of the redback companion of PSR J2215+5135. Redistribution effects concentrate near the terminator line of pulsar irradiation, and can create apparent hot and cold spots. Among the models tested for PSR J2215+5135, we find that all models with heat redistribution are more likely than symmetric direct heating. The best-fitting redistribution model involves diffusion together with a uniformly rotating envelope. However, we caution that all models still present serious systematic effects, and that prior knowledge from pulsar timing, spectroscopy and distance are key to determine with certainty the most accurate redistribution law. We propose an extension of the direct heating framework that allows for exploring a variety of heat redistribution effects. Future work is necessary to determine the relevant laws from first principles and empirically using complementary observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源