论文标题

下一代自组织网络中移交管理的复发性神经网络

Recurrent Neural Networks for Handover Management in Next-Generation Self-Organized Networks

论文作者

Ali, Zoraze, Miozzo, Marco, Giupponi, Lorenza, Dini, Paolo, Denic, Stojan, Vassaki, Stavroula

论文摘要

在本文中,我们讨论了下一代自组织网络的切换管理计划。我们建议从完整的协议堆栈数据中提取经验,以在多单元的情况下做出智能的移交决策,在该方案中,用户移动并受到中断的深区挑战。传统的切换方案的缺点是在移交之前仅考虑到服务和目标单元的信号强度。但是,我们认为,目标细胞将其交换决定的预期经验质量(QOE)应该是交换决定的驱动原则。特别是,我们提出了两个基于多层多一对一LSTM体系结构的模型,以及与多层PESCEPTRON(MLP)神经网络结合使用的多层LSTM AutoCododer(AE)。我们表明,利用从数据中提取的经验,我们可以将下载最终下载的用户数量提高18%,并且就基于事件的标准切换基准方案而言,我们可以减少下载时间。此外,为了泛化,我们在不同的情况下测试了LSTM自动编码器,与原始情况相比,它可以通过轻微的降解来维持其性能改进。

In this paper, we discuss a handover management scheme for Next Generation Self-Organized Networks. We propose to extract experience from full protocol stack data, to make smart handover decisions in a multi-cell scenario, where users move and are challenged by deep zones of an outage. Traditional handover schemes have the drawback of taking into account only the signal strength from the serving, and the target cell, before the handover. However, we believe that the expected Quality of Experience (QoE) resulting from the decision of target cell to handover to, should be the driving principle of the handover decision. In particular, we propose two models based on multi-layer many-to-one LSTM architecture, and a multi-layer LSTM AutoEncoder (AE) in conjunction with a MultiLayer Perceptron (MLP) neural network. We show that using experience extracted from data, we can improve the number of users finalizing the download by 18%, and we can reduce the time to download, with respect to a standard event-based handover benchmark scheme. Moreover, for the sake of generalization, we test the LSTM Autoencoder in a different scenario, where it maintains its performance improvements with a slight degradation, compared to the original scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源