论文标题

将微不足道的表示形式提升为非线性双层盖

Lift of the trivial representation to a nonlinear double cover

论文作者

Tsai, Wan-Yu

论文摘要

令$ \ widetilde g $为连接的,简单连接的半圣复合组的真实点的非线性双盖。在[ts]中,我们引入了一组$ \ widetilde g $的真正小代表,带有无限字符$λ$,表示为$ \ prod_λ^s(\ widetilde g)$。在本文中,我们表明$ \ prod _ {ρ/2} ^s(\ wideTilde g)$恰恰是一组真正的不可减至的代表,而当$ \ widetilde g $被简单地划分并分裂时,卡兹丹 - 帕特森提升了琐事表示。

Let $\widetilde G$ be the nonlinear double cover of the real points of a connected, simply connected, semisimple complex group. In [Ts], we introduce a set of genuine small representations of $\widetilde G$ with infinitesimal character $λ$, denoted $\prod _λ^s (\widetilde G)$. In this paper, we show that $\prod _{ρ/2} ^s (\widetilde G)$ is precisely the set of genuine irreducible representations arising from the Kazhdan-Patterson lifting of the trivial representation, when $\widetilde G$ is simply laced and split.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源