论文标题

在阿贝尔的品种点上,在圆环中相交的亚组

On abelian points of varieties intersecting subgroups in a torus

论文作者

Mello, Jorge

论文摘要

我们表明,在某些自然条件下,Abelian的一组指向封闭的不可约束的子不同$ x $与CODIMENION的连接代数亚组相交至少$ \ dim x $在圆环中是有限的,sha,sha,sha,sharparinski和zannier sannier(2017)。当代数亚组不一定连接并在曲线和算术动力学的背景下获得相关结果时,我们还将其结构定理概括为此类集合。

We show, under some natural conditions, that the set of abelian points on the non-anomalous subset of a closed irreducible subvariety $X$ intersected with the union of connected algebraic subgroups of codimension at least $\dim X$ in a torus is finite, generalising results of Ostafe, Sha, Shparlinski and Zannier (2017). We also generalise their structure theorem for such sets when the algebraic subgroups are not necessarily connected, and obtain a related result in the context of curves and arithmetic dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源