论文标题

研究对抗样品的鲁棒性检测自动扬声器验证

Investigating Robustness of Adversarial Samples Detection for Automatic Speaker Verification

论文作者

Li, Xu, Li, Na, Zhong, Jinghua, Wu, Xixin, Liu, Xunying, Su, Dan, Yu, Dong, Meng, Helen

论文摘要

最近,对自动扬声器验证(ASV)系统的对抗性攻击引起了广泛的关注,因为它们对ASV系统构成了严重威胁。但是,防御此类攻击的方法是有限的。现有方法主要集中于通过对抗数据扩展来重新培训ASV系统。同样,对不同的攻击环境的对策鲁棒性不足。这项工作与先前的方法正交,建议通过单独的检测网络捍卫ASV系统免受对抗攻击,而不是将对抗数据扩大到ASV培训中。引入并证明了VGG样二元分类检测器可有效检测对抗样品。为了在可能存在看不见的攻击设置的现实防御场景中调查探测器的鲁棒性,我们分析了各种未见的攻击设置的影响,并观察到检测器是稳健的(6.27 \%eer_ {det}在糟糕的情况下降级),但对于未见的ASV系统,它具有较弱的ASV范围,但它具有较弱反对看不见的扰动方法。针对看不见的扰动方法的稳健性弱,显示了发展更强的对策的方向。

Recently adversarial attacks on automatic speaker verification (ASV) systems attracted widespread attention as they pose severe threats to ASV systems. However, methods to defend against such attacks are limited. Existing approaches mainly focus on retraining ASV systems with adversarial data augmentation. Also, countermeasure robustness against different attack settings are insufficiently investigated. Orthogonal to prior approaches, this work proposes to defend ASV systems against adversarial attacks with a separate detection network, rather than augmenting adversarial data into ASV training. A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples. To investigate detector robustness in a realistic defense scenario where unseen attack settings may exist, we analyze various kinds of unseen attack settings' impact and observe that the detector is robust (6.27\% EER_{det} degradation in the worst case) against unseen substitute ASV systems, but it has weak robustness (50.37\% EER_{det} degradation in the worst case) against unseen perturbation methods. The weak robustness against unseen perturbation methods shows a direction for developing stronger countermeasures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源