论文标题
线性耦合极限周期振荡器网络中的脱钩同步状态
Decoupled synchronized states in networks of linearly coupled limit cycle oscillators
论文作者
论文摘要
极限循环振荡器网络可以显示同步的复杂模式,例如splay状态和群集同步。在这里,我们分析了表现出看似独立的Splay簇连续体的动力状态。每个Splay簇都是一个块状状态,由具有均匀振幅的完全同步节点的子群体组成。散布簇内的节点的阶段相同间隔,但是不同的splay簇中的节点具有任意的相位差,可以固定或及时固定或线性地进化。这种共存的散布簇形成一个脱钩的状态,因为动态方程在振荡器之间有效地脱钩,可以在物理上耦合。我们提供了允许使用耦合矩阵的特征分类来存在特定解耦状态的条件。此外,我们还提供了一种算法,以使用外部公平分区和轨道分区的考虑与对称类固定形式相结合,以搜索可允许的分离状态。与以前的研究不同,我们的方法是适用的,当存在不单独从对称性遵循时,也说明了邻接和拉普拉斯耦合之间的差异。我们表明,使用简单的八节点网络及其修改为示例,可以在相当多的参数中线性稳定。我们还展示了如何通过考虑雅各布矩阵的对称性来简化解耦状态的线性稳定性分析。一些网络结构可以支持多种解耦模式。为了说明这一点,我们显示了在二维正方形和六边形晶格上可能出现的各种定性分离状态的多样性。
Networks of limit cycle oscillators can show intricate patterns of synchronization such as splay states and cluster synchronization. Here we analyze dynamical states that display a continuum of seemingly independent splay clusters. Each splay cluster is a block splay state consisting of sub-clusters of fully synchronized nodes with uniform amplitudes. Phases of nodes within a splay cluster are equally spaced, but nodes in different splay clusters have an arbitrary phase difference that can be fixed or evolve linearly in time. Such coexisting splay clusters form a decoupled state in that the dynamical equations become effectively decoupled between oscillators that can be physically coupled. We provide the conditions that allow the existence of particular decoupled states by using the eigendecomposition of the coupling matrix. Additionally, we provide an algorithm to search for admissible decoupled states using the external equitable partition and orbital partition considerations combined with symmetry groupoid formalism. Unlike previous studies, our approach is applicable when existence does not follow from symmetries alone and also illustrates the differences between adjacency and Laplacian coupling. We show that the decoupled state can be linearly stable for a substantial range of parameters using a simple eight-node cube network and its modifications as an example. We also demonstrate how the linear stability analysis of decoupled states can be simplified by taking into account the symmetries of the Jacobian matrix. Some network structures can support multiple decoupled patterns. To illustrate that, we show the variety of qualitatively different decoupled states that can arise on two-dimensional square and hexagonal lattices.