论文标题

DNS隧道:基于深度学习的词典检测方法

DNS Tunneling: A Deep Learning based Lexicographical Detection Approach

论文作者

Palau, Franco, Catania, Carlos, Guerra, Jorge, Garcia, Sebastian, Rigaki, Maria

论文摘要

域名服务是为解决名称解决的一种值得信赖的协议,但是在过去的几年中,已经开发了一些方法将其用于数据传输。 DNS隧道是一种在DNS查询中编码数据的方法,可以通过DNS进行信息交换。这种特征对利用DNS隧道方法的黑客有吸引力,以与带有恶意软件感染的机器建立双向通信,目的是以混淆的方式去渗透数据或发送指令。为了快速,准确地检测这些威胁,目前的工作提出了一种基于卷积神经网络(CNN)的检测方法,其架构的复杂性最小。由于缺乏评估DNS隧道连接的质量数据集,我们还提供了一个新型数据集的详细构造和描述,该数据集包含使用五个知名DNS工具生成的DNS隧道域。尽管它具有简单的结构,但最终的CNN模型还是正确地检测到了超过总隧道域的92%以上,假正率接近0.8%。

Domain Name Service is a trusted protocol made for name resolution, but during past years some approaches have been developed to use it for data transfer. DNS Tunneling is a method where data is encoded inside DNS queries, allowing information exchange through the DNS. This characteristic is attractive to hackers who exploit DNS Tunneling method to establish bidirectional communication with machines infected with malware with the objective of exfiltrating data or sending instructions in an obfuscated way. To detect these threats fast and accurately, the present work proposes a detection approach based on a Convolutional Neural Network (CNN) with a minimal architecture complexity. Due to the lack of quality datasets for evaluating DNS Tunneling connections, we also present a detailed construction and description of a novel dataset that contains DNS Tunneling domains generated with five well-known DNS tools. Despite its simple architecture, the resulting CNN model correctly detected more than 92% of total Tunneling domains with a false positive rate close to 0.8%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源