论文标题

在具有固定点具有可计数恩格尔的固定点的自态群体上

On profinite groups with automorphisms whose fixed points have countable Engel sinks

论文作者

Khukhro, E. I., Shumyatsky, P.

论文摘要

$ g $的元素$ g $的engel水槽是$ {\ mathscr e}(g)$,以便每$ x \ in g $ in G $中的每一个足够长的换向器$ [... [[x,g],g],g],\ dots,g],\ dots,g] $属于$ {\ mathscr e}(g)(g)$。 (因此,$ g $正是我们可以选择$ {\ mathscr e}(g)= \ {1 \} $。 a \ setMinus \ {1 \} $ centralizer $ c_g(a)$的每个元素具有可计数(或有限的)engel sink,然后$ g $具有有限的普通亚组$ n $,因此$ g/n $是本地nilpotent。

An Engel sink of an element $g$ of a group $G$ is a set ${\mathscr E}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[x,g],g],\dots ,g]$ belong to ${\mathscr E}(g)$. (Thus, $g$ is an Engel element precisely when we can choose ${\mathscr E}(g)=\{ 1\}$.) It is proved that if a profinite group $G$ admits an elementary abelian group of automorphisms $A$ of coprime order $q^2$ for a prime $q$ such that for each $a\in A\setminus\{1\}$ every element of the centralizer $C_G(a)$ has a countable (or finite) Engel sink, then $G$ has a finite normal subgroup $N$ such that $G/N$ is locally nilpotent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源