论文标题

密集堆积的强硬球流体的动力学特性

Dynamical properties of densely packed confined hard-sphere fluids

论文作者

Jung, Gerhard, Caraglio, Michele, Schrack, Lukas, Franosch, Thomas

论文摘要

详细阐述了限制在两个平行硬壁之间的硬球流体的模式耦合理论(MCT)方程的数值解。理事方程式具有多个平行松弛通道,这显着使其数值整合复杂化。我们研究了接近结构停滞的中间散射功能和易感光谱,并与MCT方程的渐近分析进行了比较。我们证实,数据以$β$尺度的制度融合到两个渐近功率定律,即。批判性衰减和冯·施韦德勒法律。数值结果揭示了幂律指数对平板宽度的非单调依赖性,而在低频敏感性光谱中的非单调依赖性。我们还发现这些理论结果与事件驱动的分子型硬球系统的分子模拟有关。特别是,动态特性对平板宽度的非平地依赖性得到很好的再现。

Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations. We corroborate that the data converge in the $β$-scaling regime to two asymptotic power laws, viz. the critical decay and the von Schweidler law. The numerical results reveal a non-monotonic dependence of the power-law exponents on the slab width and a non-trivial kink in the low-frequency susceptibility spectra. We also find qualitative agreement of these theoretical results to event-driven molecular-dynamics simulations of polydisperse hard-sphere system. In particular, the non-trivial dependence of the dynamical properties on the slab width is well reproduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源