论文标题
动态lambda的量子宇宙学
Quantum cosmology of a dynamical Lambda
论文作者
论文摘要
通过允许扭转进入引力动力学,可以将宇宙常数$λ$促进到一类准探针理论中的动力学变量。在本文中,我们在连接表示中对这些理论执行这些理论的迷你空间量化。如果$λ$保持固定,则解决方案是Chern-Simons(CS)状态的Delta差异版本,该版本是Hartle and Hawking和Vilenkin Wave-pounctions的双重双重。我们发现,如果Euler Quasi-Topological不变式动态化$λ$,则CS状态也可以解决Wheeler-Dewitt方程。在没有临界点(IR)截止的情况下,CS状态表明边缘概率$ p(λ)=δ(λ)$。如果出于某种原因,如果有IR截止值(无论出于何种原因),概率在切断时会达到高峰。但是,在奇特 - 奥德分支中,我们仍然可以找到CS状态是一种特定的(但不是大多数一般)解决方案,但是需要进一步的工作来提高预测。对于基于泛素蛋白不变的理论(仅具有奇偶元分支),CS波函数不再是对约束的解决方案。在这种情况下,我们找到了最通用的解决方案,该解决方案再次为$λ$的一系列预测留出了空间。
By allowing torsion into the gravitational dynamics one can promote the cosmological constant, $Λ$, to a dynamical variable in a class of quasi-topological theories. In this paper we perform a mini-superspace quantization of these theories in the connection representation. If $Λ$ is kept fixed, the solution is a delta-normalizable version of the Chern-Simons (CS) state, which is the dual of the Hartle and Hawking and Vilenkin wave-functions. We find that the CS state solves the Wheeler-DeWitt equation also if $Λ$ is rendered dynamical by an Euler quasi-topological invariant, {\it in the parity-even branch of the theory}. In the absence of an infra-red (IR) cut-off, the CS state suggests the marginal probability $P(Λ)=δ(Λ)$. Should there be an IR cutoff (for whatever reason) the probability is sharply peaked at the cut off. In the parity-odd branch, however, we can still find the CS state as a particular (but not most general) solution, but further work is needed to sharpen the predictions. For the theory based on the Pontryagin invariant (which only has a parity-odd branch) the CS wave function no longer is a solution to the constraints. We find the most general solution in this case, which again leaves room for a range of predictions for $Λ$.