论文标题
较高尺寸抗DE保姆的非线性扰动
Nonlinear perturbations of higher dimensional anti-de Sitter spacetime
论文作者
论文摘要
我们研究真空爱因斯坦方程的非线性重力扰动,其中$λ<0 $ in $(n+2)$尺寸为$ n> 2 $,将先前的研究推广为$ n = 2 $。我们遵循Ishibashi,Kodama和Seto的形式主义将度量扰动分解为张量,向量和标量扇区,并简化Einstein方程。张量扰动是更高维度的新功能。我们通过为每个扇区采用合适的量规选择来渐近地扰动抗DE保姆。最后,我们通过对线性水平的单模式张量型扰动进行部分研究,分析了五维情况下二维方程的共振结构。对于我们研究的情况,共鸣术语以二阶消失。
We study nonlinear gravitational perturbations of vacuum Einstein equations, with $Λ<0$ in $(n+2)$ dimensions, with $n>2$, generalizing previous studies for $n=2$. We follow the formalism by Ishibashi, Kodama and Seto to decompose the metric perturbations into tensor, vector and scalar sectors, and simplify the Einstein equations. The tensor perturbations are the new feature of higher dimensions. We render the metric perturbations asymptotically anti-de Sitter by employing a suitable gauge choice for each of the sectors. Finally, we analyze the resonant structure of the perturbed equations at second order for the five dimensional case, by a partial study of single mode tensor-type perturbations at the linear level. For the cases we studied, resonant terms vanish at second order.