论文标题

带有手持设备的野外实时单图像深度感知

Real-time single image depth perception in the wild with handheld devices

论文作者

Aleotti, Filippo, Zaccaroni, Giulio, Bartolomei, Luca, Poggi, Matteo, Tosi, Fabio, Mattoccia, Stefano

论文摘要

深度感知对于解决现实世界中的问题至关重要,从自动驾驶到消费者应用。对于后者,来自单个图像的深度估计代表了最通用的解决方案,因为几乎所有手持设备都可以使用标准摄像头。但是,两个主要问题限制了其实际部署:i)在野外部署和ii)时的可靠性低,而ii)苛刻的资源要求实现实时性能,通常与此类设备不兼容。因此,在本文中,我们深入研究了这些问题,表明它们既可以解决适当的网络设计和培训策略,又概述了如何在手持设备上绘制所得网络以实现实时性能。我们的彻底评估突出了这种快速网络将其概括为新环境的能力,这是解决实际应用中面临的极其多样化环境所需的关键功能。确实,为了进一步支持这一证据,我们报告了有关实时深度感知的增强现实和形象与智能手机内部模糊的实验结果。

Depth perception is paramount to tackle real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image represents the most versatile solution, since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit its practical deployment: i) the low reliability when deployed in-the-wild and ii) the demanding resource requirements to achieve real-time performance, often not compatible with such devices. Therefore, in this paper, we deeply investigate these issues showing how they are both addressable adopting appropriate network design and training strategies -- also outlining how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time depth-aware augmented reality and image blurring with smartphones in-the-wild.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源