论文标题

主动物质中的奇数粘度:显微镜起源和3D效应

Odd viscosity in active matter: microscopic origin and 3D effects

论文作者

Markovich, Tomer, Lubensky, Tom C.

论文摘要

在常见的流体中,粘度与耗散有关。但是,当时间逆转对称性被打破时,可能会出现一种新型的非疾病的“粘度”。对具有主动旋转颗粒的经典2D系统的最新理论和实验提高了对奇数的兴趣,但是在活性材料中的微观理论仍然不存在。在这里,我们提出了这种第一原理微观哈密顿理论,对2D和3D有效,表明在任何系统中都存在奇数,是否存在平衡,是否具有对齐的旋转组件。我们的工作大大扩展了奇数粘度在3D流体中的适用性,特别是对内部驱动的活性材料(例如活物质(例如Actomyosin Gels))的适用性。我们发现奇数粘度的3D效应,例如各向异性散装剪切波的传播以及伯诺利原理的崩溃。

In common fluids, viscosity is associated with dissipation. However, when time-reversal-symmetry is broken a new type of non-dissipative `viscosity' may emerge. Recent theories and experiments on classical 2D systems with active spinning particles have heightened interest in odd viscosity, but a microscopic theory for it in active materials is still absent. Here we present such first-principles microscopic Hamiltonian theory, valid for both 2D and 3D, showing that odd viscosity is present in any system, equilibrium or not, with aligned spinning components. Our work substantially extends the applicability of odd viscosity into 3D fluids, and specifically to internally driven active materials, such as living matter (e.g., actomyosin gels). We find intriguing 3D effects of odd viscosity such as propagation of anisotropic bulk shear waves and breakdown of Bernoulli's principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源