论文标题

复杂网络的节点嵌入和精确的低级别表示

Node Embeddings and Exact Low-Rank Representations of Complex Networks

论文作者

Chanpuriya, Sudhanshu, Musco, Cameron, Sotiropoulos, Konstantinos, Tsourakakis, Charalampos E.

论文摘要

从经典光谱嵌入到现代神经网络启发的方法,低维嵌入是对复杂网络的建模和分析的基石。 Seshadhri等人的最新工作。 (PNAS 2020)表明,这种嵌入无法捕获复杂网络中产生的局部结构。特别是,他们表明,从天然低维模型产生的任何网络都不能稀疏且具有高三角形密度(高聚类系数),这是许多现实世界网络的两个标志性能。 在这项工作中,我们表明Seshadhri等人的结果。与他们使用的模型密切相关,而不是复杂网络的低维结构。具体而言,我们证明其模型的小松弛可以产生具有高三角形密度的稀疏图。令人惊讶的是,我们表明,相同的模型导致许多现实世界网络的精确低维因素化。我们基于逻辑主成分分析(LPCA)提供了一种简单的算法,该算法成功地找到了这种精确的嵌入。最后,我们执行大量实验,以验证非常低维嵌入在现实世界网络中捕获局部结构的能力。

Low-dimensional embeddings, from classical spectral embeddings to modern neural-net-inspired methods, are a cornerstone in the modeling and analysis of complex networks. Recent work by Seshadhri et al. (PNAS 2020) suggests that such embeddings cannot capture local structure arising in complex networks. In particular, they show that any network generated from a natural low-dimensional model cannot be both sparse and have high triangle density (high clustering coefficient), two hallmark properties of many real-world networks. In this work we show that the results of Seshadhri et al. are intimately connected to the model they use rather than the low-dimensional structure of complex networks. Specifically, we prove that a minor relaxation of their model can generate sparse graphs with high triangle density. Surprisingly, we show that this same model leads to exact low-dimensional factorizations of many real-world networks. We give a simple algorithm based on logistic principal component analysis (LPCA) that succeeds in finding such exact embeddings. Finally, we perform a large number of experiments that verify the ability of very low-dimensional embeddings to capture local structure in real-world networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源