论文标题

使用稀疏高斯工艺模型可扩展的汤普森采样

Scalable Thompson Sampling using Sparse Gaussian Process Models

论文作者

Vakili, Sattar, Moss, Henry, Artemev, Artem, Dutordoir, Vincent, Picheny, Victor

论文摘要

高斯进程(GP)模型的汤普森采样(TS)是优化黑框函数的强大工具。尽管TS具有强大的理论保证和令人信服的经验表现,但它会引起大型计算开销,该开销与优化预算多一级规模。最近,已经提出了基于稀疏GP模型的可伸缩TS方法来增加TS的范围,从而使其应用于足够多模式,嘈杂或组合的问题,以需要超过几百个评估才能解决。但是,稀疏GPS引入的近似错误使所有现有的后悔界限无效。在这项工作中,我们对可扩展TS进行了理论和经验分析。我们提供理论保证,并表明可以享受可扩展TS的计算复杂性的急剧降低,而不会在标准TS的遗憾表现中丧失。这些概念主张是在合成基准上实现可扩展TS的实际实现的验证,并且作为现实世界高通用分子设计任务的一部分。

Thompson Sampling (TS) from Gaussian Process (GP) models is a powerful tool for the optimization of black-box functions. Although TS enjoys strong theoretical guarantees and convincing empirical performance, it incurs a large computational overhead that scales polynomially with the optimization budget. Recently, scalable TS methods based on sparse GP models have been proposed to increase the scope of TS, enabling its application to problems that are sufficiently multi-modal, noisy or combinatorial to require more than a few hundred evaluations to be solved. However, the approximation error introduced by sparse GPs invalidates all existing regret bounds. In this work, we perform a theoretical and empirical analysis of scalable TS. We provide theoretical guarantees and show that the drastic reduction in computational complexity of scalable TS can be enjoyed without loss in the regret performance over the standard TS. These conceptual claims are validated for practical implementations of scalable TS on synthetic benchmarks and as part of a real-world high-throughput molecular design task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源