论文标题
Bott-Samelson品种共同体的张量产品分解
Tensor product decompositions for cohomologies of Bott-Samelson varieties
论文作者
论文摘要
让$ t $是半密布复杂代数组的最大圆环,$ \ mathrm {bs}(s)$是一系列简单反射$ s $和$ \ mathrm {bs}(s)^t $的bott-samelson品种。我们证明了限制$ H^\ bullet_t(\ Mathrm {bs}(s),k),k)\ to H_T^\ bulter(x,k)$的张量产品分解,其中$ x \ subset \ subset \ subset \ subset \ mathrm {bs}(bs}(s)^t $定义$γ_Iγ_{i+1} \cdotsγ_j= w_ {i,j} $,右侧属于Weyl组。
Let $T$ be a maximal torus of a semisimple complex algebraic group, $\mathrm{BS}(s)$ be the Bott-Samelson variety for a sequence of simple reflections $s$ and $\mathrm{BS}(s)^T$ be the set of $T$-fixed points of $\mathrm{BS}(s)$. We prove the tensor product decompositions for the image of the restriction $H^\bullet_T(\mathrm{BS}(s),k)\to H_T^\bullet(X,k)$, where $X\subset\mathrm{BS}(s)^T$ is defined by some special not overlapping equations $γ_iγ_{i+1}\cdotsγ_j=w_{i,j}$ with right-hand sides belonging to the Weyl group.