论文标题
生物启发的双态性复发单元允许持久的内存
A bio-inspired bistable recurrent cell allows for long-lasting memory
论文作者
论文摘要
复发性神经网络(RNN)在需要内存的各种任务中提供最先进的表演。由于封闭式复发单元(例如封闭式复发单元(GRU)和长期短期记忆(LSTM)),通常可以实现这些性能。标准门控单元共享一个图层内部状态以存储网络级别的信息,并且长期内存是由网络范围的复发连接权重塑造的。另一方面,生物神经元能够通过称为BISTASIO的过程在任意长时间的细胞水平上持有信息。通过双态性,细胞可以根据其过去的状态和输入的不同,可以稳定在不同的稳定状态下,这允许在神经元状态下持久存储过去的信息。在这项工作中,我们从生物神经元的双重性到在细胞水平上具有持久记忆的RNN的灵感。这导致引入了新的Bistable生物学启发的复发细胞,该细胞被证明可以强烈改善需要很长的记忆力的RNN性能,尽管仅使用细胞连接(所有复发连接都从神经元到自身,即神经元状态不受其他神经元状态的影响)。此外,为该细胞配备复发性神经调节允许将它们与标准的GRU细胞联系起来,从而朝着GRU的生物学合理性迈出了一步。
Recurrent neural networks (RNNs) provide state-of-the-art performances in a wide variety of tasks that require memory. These performances can often be achieved thanks to gated recurrent cells such as gated recurrent units (GRU) and long short-term memory (LSTM). Standard gated cells share a layer internal state to store information at the network level, and long term memory is shaped by network-wide recurrent connection weights. Biological neurons on the other hand are capable of holding information at the cellular level for an arbitrary long amount of time through a process called bistability. Through bistability, cells can stabilize to different stable states depending on their own past state and inputs, which permits the durable storing of past information in neuron state. In this work, we take inspiration from biological neuron bistability to embed RNNs with long-lasting memory at the cellular level. This leads to the introduction of a new bistable biologically-inspired recurrent cell that is shown to strongly improves RNN performance on time-series which require very long memory, despite using only cellular connections (all recurrent connections are from neurons to themselves, i.e. a neuron state is not influenced by the state of other neurons). Furthermore, equipping this cell with recurrent neuromodulation permits to link them to standard GRU cells, taking a step towards the biological plausibility of GRU.