论文标题

近共振隧道连接的热电及其近键效率

Thermoelectricity of near-resonant tunnel junctions and their near-Carnot efficiency

论文作者

Popp, Matthias A., Erpenbeck, André, Weber, Heiko B.

论文摘要

共振隧穿模型是描述通过纳米级对象(如单个分子)描述电子传输的最简单模型。完全了解不仅包括电荷传输,还包括热传输及其复杂的相互作用。关键的线性响应可观察物是电导G和Seebeck系数S。在这里,我们介绍了有关未指定的谐振隧道连接和分子连接的实验,这些实验会发现$ g $和$ s $之间的相关性,尤其是$ s(g)$的刚性边界。我们发现,单层共振隧道模型可以一致地理解这些相关性,并与实验匹配非常匹配。在此框架中,给定连接点的$ i(v)$和$ s $可访问电子系统的完整热电表征。一个显着的结果是,如果没有靶向化学设计,分子连接可以暴露于接近Carnot极限的热电转换效率。这种见解允许为优化的热电效率提供设计规则。

The resonant tunneling model is the simplest model for describing electronic transport through nanoscale objects like individual molecules. A complete understanding includes not only charge transport but also thermal transport and their intricate interplay. Key linear response observables are the electrical conductance G and the Seebeck coefficient S. Here we present experiments on unspecified resonant tunnel junctions and molecular junctions that uncover correlations between $G$ and $S$, in particular rigid boundaries for $S(G)$. We find that these correlations can be consistently understood by the single-level resonant tunneling model, with excellent match to experiments. In this framework, measuring $I(V)$ and $S$ for a given junction provides access to the full thermoelectric characterization of the electronic system. A remarkable result is that without targeted chemical design, molecular junctions can expose thermoelectric conversion efficiencies which are close to the Carnot limit. This insight allows to provide design rules for optimized thermoelectric efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源