论文标题

通过对比度图对大脑网络的可解释分类

Explainable Classification of Brain Networks via Contrast Subgraphs

论文作者

Lanciano, Tommaso, Bonchi, Francesco, Gionis, Aristides

论文摘要

挖掘人脑网络以发现可用于区分健康个体和受某些神经系统疾病影响的患者的模式,这是神经科学的基本任务。学习简单且可解释的模型与仅分类精度一样重要。在本文中,我们介绍了一种基于提取对比子图的大脑网络进行分类的新方法,即,一组诱导子图在一类图中密集而稀疏的顶点。我们正式定义了该问题,并提出了用于提取对比子图的算法解决方案。然后,我们将我们的方法应用于由自闭症谱系障碍和通常开发的儿童组成的儿童组成的大脑网络数据集。我们的分析证实了发现的模式的有趣性,这些模式与神经科学文献中的背景知识相匹配。对其他分类任务的进一步分析证实了我们的提案的简单性,健全性和高解释性(也表现出卓越的分类精度),以表现出更为复杂的最新方法。

Mining human-brain networks to discover patterns that can be used to discriminate between healthy individuals and patients affected by some neurological disorder, is a fundamental task in neuroscience. Learning simple and interpretable models is as important as mere classification accuracy. In this paper we introduce a novel approach for classifying brain networks based on extracting contrast subgraphs, i.e., a set of vertices whose induced subgraphs are dense in one class of graphs and sparse in the other. We formally define the problem and present an algorithmic solution for extracting contrast subgraphs. We then apply our method to a brain-network dataset consisting of children affected by Autism Spectrum Disorder and children Typically Developed. Our analysis confirms the interestingness of the discovered patterns, which match background knowledge in the neuroscience literature. Further analysis on other classification tasks confirm the simplicity, soundness, and high explainability of our proposal, which also exhibits superior classification accuracy, to more complex state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源