论文标题
引起旅游概况:图片集的用户研究
Eliciting Touristic Profiles: A User Study on Picture Collections
论文作者
论文摘要
引起游客的偏好和需求是具有挑战性的,因为人们通常很难明确表达它们,尤其是在旅行计划的最初阶段。因此,在计划早期阶段使用的推荐系统对用户的普遍满意非常有益。先前的研究探索了图片作为交流工具,并作为隐式推断旅行者的偏好和需求的一种方式。在本文中,我们进行了一项用户研究,以验证以前的索赔和概念性工作,以实现从选择用户图片中进行旅行兴趣的可行性。我们利用微调的卷积神经网络来计算图片的矢量表示,其中每个维度都对应于传统的七因素模型的旅行行为模式。在我们的研究中,我们遵循严格的隐私原则,并在计算其矢量表示后没有保存上传图片。我们使用不同的策略将用户图片的表示形式汇总为单个用户表示形式,即旅游配置文件。在我们与81名参与者的用户研究中,我们让用户调整了预测的旅游概况,并确认我们方法的有用性。我们的结果表明,鉴于图片的集合可以确定用户的旅游概况。
Eliciting the preferences and needs of tourists is challenging, since people often have difficulties to explicitly express them, especially in the initial phase of travel planning. Recommender systems employed at the early stage of planning can therefore be very beneficial to the general satisfaction of a user. Previous studies have explored pictures as a tool of communication and as a way to implicitly deduce a traveller's preferences and needs. In this paper, we conduct a user study to verify previous claims and conceptual work on the feasibility of modelling travel interests from a selection of a user's pictures. We utilize fine-tuned convolutional neural networks to compute a vector representation of a picture, where each dimension corresponds to a travel behavioural pattern from the traditional Seven-Factor model. In our study, we followed strict privacy principles and did not save uploaded pictures after computing their vector representation. We aggregate the representations of the pictures of a user into a single user representation, i.e., touristic profile, using different strategies. In our user study with 81 participants, we let users adjust the predicted touristic profile and confirm the usefulness of our approach. Our results show that given a collection of pictures the touristic profile of a user can be determined.