论文标题

用天真的语义图进行身体约束的短期车辆轨迹预测

Physically constrained short-term vehicle trajectory forecasting with naive semantic maps

论文作者

Dulian, Albert, Murray, John C.

论文摘要

城市环境表现出很高的复杂性,因此对于嵌入自动驾驶汽车(AV)中的安全系统至关重要,能够准确预测附近代理的短期未来运动。可以进一步理解这个问题是基于其过去的运动数据,例如,为给定代理生成一系列未来坐标。位置,速度,加速度等,而当前方法表明结果可能会忽略场景的物理约束。在本文中,我们根据CNN和LSTM编码器架构的结合提出了模型,该模型学会从语义图和代理的一般运动中提取相关的道路特征,并使用这种学识渊博的表示来预测其短期的未来轨迹。我们在可公开的数据集中训练和验证该模型,该数据集提供了来自城市地区的数据,从而使我们可以在具有挑战性和不确定的情况下对其进行检查。我们表明,我们的模型不仅能够在考虑道路界限的同时预测未来的运动,而且还可以有效,精确地预测轨迹在更长的时间范围内,而不是最初的训练。

Urban environments manifest a high level of complexity, and therefore it is of vital importance for safety systems embedded within autonomous vehicles (AVs) to be able to accurately predict the short-term future motion of nearby agents. This problem can be further understood as generating a sequence of future coordinates for a given agent based on its past motion data e.g. position, velocity, acceleration etc, and whilst current approaches demonstrate plausible results they have a propensity to neglect a scene's physical constrains. In this paper we propose the model based on a combination of the CNN and LSTM encoder-decoder architecture that learns to extract a relevant road features from semantic maps as well as general motion of agents and uses this learned representation to predict their short-term future trajectories. We train and validate the model on the publicly available dataset that provides data from urban areas, allowing us to examine it in challenging and uncertain scenarios. We show that our model is not only capable of anticipating future motion whilst taking into consideration road boundaries, but can also effectively and precisely predict trajectories for a longer time horizon than initially trained for.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源