论文标题
人脑活动以引起机器的注意
Human brain activity for machine attention
论文作者
论文摘要
认知启发的NLP利用人类衍生的数据来教机器有关语言处理机制的信息。最近,神经网络已通过行为数据增强,以解决一系列跨越语法和语义的NLP任务。我们是第一个利用神经科学数据的人,即脑电图(EEG),以告知有关人脑语言处理的神经注意力模型。使用脑电图数据的挑战在于,功能非常丰富,需要进行大量预处理以隔离特定于文本处理的信号。我们设计了一种方法,可以通过将理论动机的裁剪与随机的森林树分裂相结合,以查找这种脑电图来监督机器的注意力。降低维度后,预处理的脑电图功能能够区分两个读取任务与公开可用的脑电图。我们将这些功能应用于对关系分类的正常关注,并表明脑电图比强质基础更具信息性。这种改进取决于任务的认知负载和EEG频域。因此,通过EEG信号告知神经注意力模型是有益的,但需要进一步研究以了解哪些维度是NLP任务中最有用的。
Cognitively inspired NLP leverages human-derived data to teach machines about language processing mechanisms. Recently, neural networks have been augmented with behavioral data to solve a range of NLP tasks spanning syntax and semantics. We are the first to exploit neuroscientific data, namely electroencephalography (EEG), to inform a neural attention model about language processing of the human brain. The challenge in working with EEG data is that features are exceptionally rich and need extensive pre-processing to isolate signals specific to text processing. We devise a method for finding such EEG features to supervise machine attention through combining theoretically motivated cropping with random forest tree splits. After this dimensionality reduction, the pre-processed EEG features are capable of distinguishing two reading tasks retrieved from a publicly available EEG corpus. We apply these features to regularise attention on relation classification and show that EEG is more informative than strong baselines. This improvement depends on both the cognitive load of the task and the EEG frequency domain. Hence, informing neural attention models with EEG signals is beneficial but requires further investigation to understand which dimensions are the most useful across NLP tasks.