论文标题
工程拓扑相过渡和aharonov-bohm笼子中的lux stagger晶格
Engineering topological phase transition and Aharonov-Bohm caging in a flux-staggered lattice
论文作者
论文摘要
表明,钻石形振荡器的紧密结合网络被捕获的交错磁通量分布显示出在捕获在细胞中的通量的受控变化下表现出拓扑相变。一种简单的真实空间拆卸技术将二进制通量交错的网络映射到等效的Su-Shrieffer-Heeger(SSH)模型。通过这种方式,应处理整个自由度的子空间,我们表明可以通过调整施加的磁场来启动拓扑相变,该磁场最终模拟了范式SSH模型中重叠积分的数值的工程。因此,人们可以使用外部试剂,而不是监视晶格的内在特性来控制拓扑特性。从实验的角度来看,这是有利的。我们还提供了对拓扑保护边缘状态的深入描述和分析,并讨论如何通过从外部调整通量可以增强单个粒子状态的aharonov-bohm笼子的空间范围,以期在任何任意时期的任意时期。此功能可用于研究量子信息的运输。我们的结果是准确的。
A tight binding network of diamond shaped unit cells trapping a staggered magnetic flux distribution is shown to exhibit a topological phase transition under a controlled variation of the flux trapped in a cell. A simple real space decimation technique maps a binary flux staggered network into an equivalent Su-Shrieffer-Heeger (SSH) model. In this way, dealing with a subspace of the full degrees of freedom, we show that a topological phase transition can be initiated by tuning the applied magnetic field that eventually simulates an engineering of the numerical values of the overlap integrals in the paradigmatic SSH model. Thus one can use an external agent, rather than monitoring the intrinsic property of a lattice to control the topological properties. This is advantageous from an experimental point of view. We also provide an in-depth description and analysis of the topologically protected edge states, and discuss how, by tuning the flux from outside one can enhance the spatial extent of the Aharonov-Bohm caging of single particle states for any arbitrary period of staggering. This feature can be useful for the study of transport of quantum information. Our results are exact.