论文标题

高组织对比度MRI合成使用多阶段注意力GAN进行神经胶质瘤分割

High Tissue Contrast MRI Synthesis Using Multi-Stage Attention-GAN for Glioma Segmentation

论文作者

Hamghalam, Mohammad, Lei, Baiying, Wang, Tianfu

论文摘要

磁共振成像(MRI)基于强磁场提供了内部器官的不同组织对比图像。尽管MRI在频繁成像中具有非侵入性优势,但目标区域中的低对比度MR图像使组织分割成为一个具有挑战性的问题。本文展示了图像到图像翻译技术的潜在优势,以产生合成的高组织对比度(HTC)图像。值得注意的是,我们采用了一种新的周期生成的对抗网络(Cyclean),具有注意机制,以增加基础组织内的对比度。注意力阻滞以及HTC图像上的训练可以指导我们的模型在某些组织上收敛。为了增加HTC图像的分辨率,我们采用多阶段结构将专注于一个特定的组织作为前景,并在每个阶段过滤掉无关的背景。这种多阶段结构还通过减少源域和目标域之间的间隙来减轻合成图像的常见伪像。我们显示了我们在包括神经胶质瘤肿瘤在内的脑MR扫描中合成HTC图像的方法的应用。我们还在端到端和两阶段分割结构中采用HTC MR图像来确认这些图像的有效性。在BRATS 2018数据集上进行三个竞争分段基线的实验表明,将合成HTC图像纳入多模式分割框架中,提高了平均骰子在整个肿瘤,肿瘤,肿瘤核心分别为0.8%,0.6%和0.5%的骰子得分0.8%,0.6%和0.5%。

Magnetic resonance imaging (MRI) provides varying tissue contrast images of internal organs based on a strong magnetic field. Despite the non-invasive advantage of MRI in frequent imaging, the low contrast MR images in the target area make tissue segmentation a challenging problem. This paper demonstrates the potential benefits of image-to-image translation techniques to generate synthetic high tissue contrast (HTC) images. Notably, we adopt a new cycle generative adversarial network (CycleGAN) with an attention mechanism to increase the contrast within underlying tissues. The attention block, as well as training on HTC images, guides our model to converge on certain tissues. To increase the resolution of HTC images, we employ multi-stage architecture to focus on one particular tissue as a foreground and filter out the irrelevant background in each stage. This multi-stage structure also alleviates the common artifacts of the synthetic images by decreasing the gap between source and target domains. We show the application of our method for synthesizing HTC images on brain MR scans, including glioma tumor. We also employ HTC MR images in both the end-to-end and two-stage segmentation structure to confirm the effectiveness of these images. The experiments over three competitive segmentation baselines on BraTS 2018 dataset indicate that incorporating the synthetic HTC images in the multi-modal segmentation framework improves the average Dice scores 0.8%, 0.6%, and 0.5% on the whole tumor, tumor core, and enhancing tumor, respectively, while eliminating one real MRI sequence from the segmentation procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源