论文标题

双重性和复杂性在完整交叉点上通过外部同源性

Duality and symmetry of complexity over complete intersections via exterior homology

论文作者

Liu, Jian, Pollitz, Josh

论文摘要

我们通过从外部代数上的同源代数导入事实来研究局部完整的交叉环的同源性能。一种应用程序表明,在Grothendieck二元性下,局部完整的相交环的有界派生类别的厚子类别是自动划分的。史蒂文森(Stevenson)证明了这枚戒指是常规环模量的常规序列的商。我们在更一般的环境中提供了两个独立的证据。其次,我们使用这些技术来提供新的证据,使整个交叉点具有复杂性的对称性。

We study homological properties of a locally complete intersection ring by importing facts from homological algebra over exterior algebras. One application is showing that the thick subcategories of the bounded derived category of a locally complete intersection ring are self-dual under Grothendieck duality. This was proved by Stevenson when the ring is a quotient of a regular ring modulo a regular sequence; we offer two independent proofs in the more general setting. Second, we use these techniques to supply new proofs that complete intersections possess symmetry of complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源