论文标题
高斯Matérn场的基于扩散的时空扩展
A diffusion-based spatio-temporal extension of Gaussian Matérn fields
论文作者
论文摘要
具有Matérn协方差功能的高斯随机字段是空间统计和机器学习中的流行模型。在这项工作中,我们开发了一个时空的延伸延伸,该阶段的高斯Matérn场被配制为对随机部分微分方程的解决方案。模型的空间固定子集具有边际空间Matérn协方差,该模型还延伸到弯曲的歧管上的Whittle-Matérn场以及更一般的非平稳场。除了空间依赖性的参数(方差,平滑度和实际相关范围)之外,它还具有控制时间,时间平滑度以及时空协方差的不可分割性的参数。通过可分离性参数,该模型还允许可分离的协方差函数。我们提供了基于有限元近似的稀疏表示,该表示非常适合统计推断,并且在R-INLA软件中实现。该模型的灵活性在全球温度数据的时空建模的应用中说明了。
Gaussian random fields with Matérn covariance functions are popular models in spatial statistics and machine learning. In this work, we develop a spatio-temporal extension of the Gaussian Matérn fields formulated as solutions to a stochastic partial differential equation. The spatially stationary subset of the models have marginal spatial Matérn covariances, and the model also extends to Whittle-Matérn fields on curved manifolds, and to more general non-stationary fields. In addition to the parameters of the spatial dependence (variance, smoothness, and practical correlation range) it additionally has parameters controlling the practical correlation range in time, the smoothness in time, and the type of non-separability of the spatio-temporal covariance. Through the separability parameter, the model also allows for separable covariance functions. We provide a sparse representation based on a finite element approximation, that is well suited for statistical inference and which is implemented in the R-INLA software. The flexibility of the model is illustrated in an application to spatio-temporal modeling of global temperature data.