论文标题

非扰动功能重归其化组及其应用

The nonperturbative functional renormalization group and its applications

论文作者

Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J. M., Tissier, M., Wschebor, N.

论文摘要

重新归一化组在概念上还是作为一个实用工具中在许多物理领域中起着至关重要的作用,可以一方面确定许多系统的长距离低能特性,而另一方面则在基本物理学中寻找可行的紫外线完成。它为我们提供了一个自然框架来研究理论模型,在这种模型中,自由度在长距离之间相关,并且在不同的能量尺度上可能表现出非常不同的行为。非扰动的功能重归化组(FRG)方法是威尔逊RG的现代实现,它允许人们设置超出标准扰动RG方法的非扰动近似方案。 FRG基于粗粒有效作用的精确功能流程(或统计力学语言中的Gibbs自由能)。我们回顾了通常用于解决该流程方程的主要近似方案,并讨论在平衡和平衡外统计物理学,量子多颗粒系统,高能物理和量子重力中的应用。

The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultraviolet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilson's RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源