论文标题

流过三维自我伴随裂缝

Flow through three-dimensional self-affine fractures

论文作者

Seybold, H. J., Carmona, H. A., Filho, F. A. Leandro, Araújo, A. D., Filho, F. Nepomuceno, Andrade Jr, J. S.

论文摘要

我们通过对Navier-Stokes方程的数值模拟进行了研究,表面粗糙度对流体流过断裂接头的影响。使用赫斯特指数$ h $来表征构成骨折的自伴表面的粗糙度,我们的分析揭示了流量上几何和惯性之间的重要相互作用。确切地说,对于Reynolds数字的低值,我们使用Darcy定律来量化骨折的液压阻力$ g $,并表明它对$ H $的依赖性可以用简单的折磨模型来解释该通道的折磨$τ$。在足够高的RE值中,当惯性效应变得相关时,我们的结果表明,与达西定律的三阶校正相关的非线性校正与$ h $成正比。这些结果表明,对流的阻力$ g $通过简单地根据断裂电阻率进行重新定位并使用有效的雷诺数字来遵循普遍的行为,即,re/$ h $。我们的结果还揭示了准二维通道的存在,即使考虑到自伴骨折的上部和下表面之间没有剪切位移。

We investigate through numerical simulations of the Navier-Stokes equations the influence of the surface roughness on the fluid flow through fracture joints. Using the Hurst exponent $H$ to characterize the roughness of the self-affine surfaces that constitute the fracture, our analysis reveal the important interplay between geometry and inertia on the flow. Precisely, for low values of Reynolds numbers Re, we use Darcy's law to quantify the hydraulic resistance $G$ of the fracture and show that its dependence on $H$ can be explained in terms of a simple geometrical model for the tortuosity $τ$ of the channel. At sufficiently high values of Re, when inertial effects become relevant, our results reveal that nonlinear corrections up to third-order to Darcy's law are aproximately proportional to $H$. These results imply that the resistance $G$ to the flow follows a universal behavior by simply rescaling it in terms of the fracture resistivity and using an effective Reynolds number, namely, Re/$H$. Our results also reveal the presence of quasi-one-dimensional channeling, even considering the absence of shear displacement between upper and lower surfaces of the self-affine fracture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源