论文标题

关于自由边界问题解决方案的独特性和单调性

On the uniqueness and monotonicity of solutions of free boundary problems

论文作者

Bartolucci, Daniele, Jevnikar, Aleks

论文摘要

对于任何$ω\ subset \ mathbb {r}^n $平滑且有限的域,我们证明了在整齐间隔的$ω$上出现的自由边界问题的肯定解决方案的独特性,这仅取决于Sobolev $ h^{1} _0} _0} _0($ hookirt $ l^whook whook r^l^2p) [1,\ frac {n} {n-2})$,并表明边界密度和适当定义的能量具有通用的单调行为。至少据我们所知,对于$ p> 1 $,这是关于不是二维球的独特性的第一个结果,尤其是解决方案的单调性的第一个结果,即使对于$ p = 1 $,这似乎是新的。对于$ p = 1 $来说,阈值是尖锐的,产生了一种新条件,可以保证$ω$内部没有自由边界。作为推论,在同一范围内,我们解决了一个长期的开放问题(可以追溯到1980年的Berestycki-Brezis的工作),涉及变异解决方案的独特性。此外,在二维球上,我们描述了阳性溶液的完整分支,也就是说,我们证明了沿正溶液的曲线曲线的单调性,直到边界密度消失。

For any $Ω\subset \mathbb{R}^N$ smooth and bounded domain, we prove uniqueness of positive solutions of free boundary problems arising in plasma physics on $Ω$ in a neat interval depending only by the best constant of the Sobolev embedding $H^{1}_0(Ω)\hookrightarrow L^{2p}(Ω)$, $p\in [1,\frac{N}{N-2})$ and show that the boundary density and a suitably defined energy share a universal monotonic behavior. At least to our knowledge, for $p>1$, this is the first result about the uniqueness for a domain which is not a two-dimensional ball and in particular the very first result about the monotonicity of solutions, which seems to be new even for $p=1$. The threshold, which is sharp for $p=1$, yields a new condition which guarantees that there is no free boundary inside $Ω$. As a corollary, in the same range, we solve a long-standing open problem (dating back to the work of Berestycki-Brezis in 1980) about the uniqueness of variational solutions. Moreover, on a two-dimensional ball we describe the full branch of positive solutions, that is, we prove the monotonicity along the curve of positive solutions until the boundary density vanishes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源