论文标题

复杂的动态网络中的稀疏错误定位

Sparse Error Localization in Complex Dynamic Networks

论文作者

Kahl, Dominik, Weber, Andreas, Kschischo, Maik

论文摘要

在许多不同领域,通过流行病到经济学和工程的生物学,了解复杂系统的动态是一项核心任务。动态系统甚至系统故障的意外行为有时很难理解。这种意外的动态可能是由系统模型错误,来自环境和系统故障的未知输入引起的。只有在系统的测量输出足够信息的情况下,才能将这些错误或故障的根本原因定位并重建其动态。在这里,我们提出了一个数学理论,用于将误差源位置定位在大型动态网络中所需的测量值。我们假设,故障或错误在网络中有限数量的位置发生。这种稀疏性假设通过解决凸的最佳控制问题来促进误差动态时间的准确重建。对于传感器测量不足以准确指出误差位置的情况,我们提供了将误差位置限制为较小的网络节点子集的方法。我们还建议有效选择其他测量值以缩小错误位置的策略。

Understanding the dynamics of complex systems is a central task in many different areas ranging form biology via epidemics to economics and engineering. Unexpected behaviour of dynamic systems or even systems failure is sometimes difficult to comprehend. Such unexpected dynamics can be caused by systematic model errors, unknown inputs from the environment and systems faults. Localizing the root cause of these errors or faults and reconstructing their dynamics is only possible if the measured outputs of the system are sufficiently informative. Here, we present a mathematical theory for the measurements required to localize the position of error sources in large dynamic networks. We assume, that faults or errors occur at a limited number of positions in the network. This sparsity assumption facilitates the accurate reconstruction of the dynamic timecourses of the errors by solving a convex optimal control problem. For cases, where the sensor measurements are not sufficiently informative to pinpoint the error position exactly, we provide methods to restrict the error location to a smaller subset of network nodes. We also suggest strategies to efficiently select additional measurements for narrowing down the error location.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源