论文标题
SP(2N)上几乎具有足够规则的无限字符和应用
Nearly holomorphic automorphic forms on Sp(2n) with sufficiently regular infinitesimal characters and applications
论文作者
论文摘要
在本文中,我们分解了几乎全体形态的希尔伯特·塞格尔自动形式的空间,作为某些假设下的阿黛尔组的表示。我们还为经典的Holomorthic Hilbert-Siegel模块化形式提供了应用。特别是,我们显示了具有较大权重的某些一致性亚组的全局Siegel操作员的溢流性。
In this paper, we decompose the space of nearly holomorphic Hilbert-Siegel automorphic forms as representations of the adele group under certain assumptions. We also give an application for classical holomorphic Hilbert-Siegel modular forms. In particular, we show the surjectivity of the global Siegel operator for certain congruence subgroups with large weights.