论文标题
最佳工作提取和最小描述长度原理
Optimal Work Extraction and the Minimum Description Length Principle
论文作者
论文摘要
我们讨论了从经典信息引擎(例如Szilárd)中提取的工作提取,其中包括$ n $ - 粒子,$ Q $分区和初始的任意非平衡状态。特别是,我们专注于它们的{\ em Optimal}行为,其中包括一组数量$φ$的测量,并使用反馈协议提取最大平均工作量。我们表明,在测量之前应驱动发动机的最佳非平衡状态,该统一模型的归一化最大可能性概率分布,该统计模型将$φ$作为足够的统计数据提供。此外,我们表明,与此模型相关的Minimax通用代码冗余$ \ MATHCAL {R}^*$,为恶魔可以从周期中以$ k _ {\ rm b} t $单位从周期中提取的工作提供了上限。我们还发现,在$ n $的限制中,最大平均提取的工作不能超过$ h [φ]/2 $,即测量的香农熵的一半倍。我们的结果在随机热力学中的最佳工作提取与最佳通用数据压缩之间建立了联系,从而为最佳信息引擎提供了设计原理。特别是,他们建议:(i)最佳编码在热力学上是有效的,(ii)必须将系统转变为关键状态,以实现最佳性能。
We discuss work extraction from classical information engines (e.g., Szilárd) with $N$-particles, $q$ partitions, and initial arbitrary non-equilibrium states. In particular, we focus on their {\em optimal} behaviour, which includes the measurement of a set of quantities $Φ$ with a feedback protocol that extracts the maximal average amount of work. We show that the optimal non-equilibrium state to which the engine should be driven before the measurement is given by the normalised maximum-likelihood probability distribution of a statistical model that admits $Φ$ as sufficient statistics. Furthermore, we show that the minimax universal code redundancy $\mathcal{R}^*$ associated to this model, provides an upper bound to the work that the demon can extract on average from the cycle, in units of $k_{\rm B}T$. We also find that, in the limit of $N$ large, the maximum average extracted work cannot exceed $H[Φ]/2$, i.e. one half times the Shannon entropy of the measurement. Our results establish a connection between optimal work extraction in stochastic thermodynamics and optimal universal data compression, providing design principles for optimal information engines. In particular, they suggest that: (i) optimal coding is thermodynamically efficient, and (ii) it is essential to drive the system into a critical state in order to achieve optimal performance.