论文标题
与分层专家交易嵌入的共同建模和交易间依赖性依赖性
Jointly Modeling Intra- and Inter-transaction Dependencies with Hierarchical Attentive Transaction Embeddings for Next-item Recommendation
论文作者
论文摘要
基于交易的推荐系统(TBR)旨在通过对交易数据中的依赖性进行建模来预测下一项。通常,考虑的两种依赖性是交易内依赖性和交易间依赖性。大多数现有的TBRS建议仅通过对当前交易中的交易依赖性进行建模,同时忽略交易间依赖性,而最近可能会影响下一个项目的交易。但是,由于并非所有最近的交易都与当前和下一个项目有关,因此应确定并确定相关交易。在本文中,我们提出了一种新型的分层专注交易嵌入(Hate)模型来解决这些问题。具体而言,两级注意机制都集成了项目嵌入和交易嵌入,以构建一个细心的上下文表示,该表征既包含了内在的交易间依赖性。通过学习的上下文表示,仇恨推荐下一个项目。对两个实际交易数据集的实验评估表明,在建议准确性方面,仇恨明显优于最先进的方法。
A transaction-based recommender system (TBRS) aims to predict the next item by modeling dependencies in transactional data. Generally, two kinds of dependencies considered are intra-transaction dependency and inter-transaction dependency. Most existing TBRSs recommend next item by only modeling the intra-transaction dependency within the current transaction while ignoring inter-transaction dependency with recent transactions that may also affect the next item. However, as not all recent transactions are relevant to the current and next items, the relevant ones should be identified and prioritized. In this paper, we propose a novel hierarchical attentive transaction embedding (HATE) model to tackle these issues. Specifically, a two-level attention mechanism integrates both item embedding and transaction embedding to build an attentive context representation that incorporates both intraand inter-transaction dependencies. With the learned context representation, HATE then recommends the next item. Experimental evaluations on two real-world transaction datasets show that HATE significantly outperforms the state-ofthe-art methods in terms of recommendation accuracy.