论文标题

全球薄弱的解决方案,用于无抗汉堡 - vlasov方程

Global weak solutions to inviscid Burgers-Vlasov equations

论文作者

Yu, Huimin, Cao, Wentao

论文摘要

在本文中,我们考虑了一个尺寸流体粒子相互作用模型的全球弱解决方案:Inviscid Burgers-Vlasov方程,其流体速度为$ l^\ infty $,而粒子的概率密度则以$ l^1 $。我们的弱解决方案也是一个熵解决方案,以使汉堡的方程式无关。该方法是增加了巧妙的人工粘度,以构建满足$ l^\ infty $补偿紧凑型框架和弱$ l^1 $紧凑型框架的近似解决方案。值得指出的是,流体速度和颗粒概率密度的动能的边界都独立于时间。

In this paper, we consider the existence of global weak solutions to a one dimensional fluid-particles interaction model: inviscid Burgers-Vlasov equations with fluid velocity in $L^\infty$ and particles' probability density in $L^1$. Our weak solution is also an entropy solution to inviscid Burgers' equation. The approach is adding ingeniously artificial viscosity to construct approximate solutions satisfying $L^\infty$ compensated compactness framework and weak $L^1$ compactness framework. It is worthy to be pointed out that the bounds of fluid velocity and the kinetic energy of particles' probability density are both independent of time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源