论文标题

Associate-3DDET:3D点云对象检测的感知到概念关联

Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection

论文作者

Du, Liang, Ye, Xiaoqing, Tan, Xiao, Feng, Jianfeng, Xu, Zhenbo, Ding, Errui, Wen, Shilei

论文摘要

从3D点云中检测的对象检测仍然是一项具有挑战性的任务,尽管最近的研究用深度学习技术推动了信封。由于与传感器的距离有严重的空间阻塞和点密度的固有方差,因此同一对象的外观在点云数据中有很大不同。设计强大的功能表示对这种外观变化是3D对象检测方法中的关键问题。在本文中,我们创新提出了一种域适应性,例如增强特征表示鲁棒性的方法。更具体地说,我们弥合了感知域之间的差距,其中该功能来自真实场景和概念域,其中从增强场景中提取了该功能,该域是由非划界点云组成的云云富含详细信息。这种域的适应方法在进行对象感知时模仿了人脑的功能。广泛的实验表明,我们简单而有效的方法从根本上提高了3D点云对象检测的性能并实现最新结果。

Object detection from 3D point clouds remains a challenging task, though recent studies pushed the envelope with the deep learning techniques. Owing to the severe spatial occlusion and inherent variance of point density with the distance to sensors, appearance of a same object varies a lot in point cloud data. Designing robust feature representation against such appearance changes is hence the key issue in a 3D object detection method. In this paper, we innovatively propose a domain adaptation like approach to enhance the robustness of the feature representation. More specifically, we bridge the gap between the perceptual domain where the feature comes from a real scene and the conceptual domain where the feature is extracted from an augmented scene consisting of non-occlusion point cloud rich of detailed information. This domain adaptation approach mimics the functionality of the human brain when proceeding object perception. Extensive experiments demonstrate that our simple yet effective approach fundamentally boosts the performance of 3D point cloud object detection and achieves the state-of-the-art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源