论文标题

完全卷积网状自动编码器使用有效的空间变化内核

Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels

论文作者

Zhou, Yi, Wu, Chenglei, Li, Zimo, Cao, Chen, Ye, Yuting, Saragih, Jason, Li, Hao, Sheikh, Yaser

论文摘要

学习注册网格的潜在表示对许多3D任务很有用。技术最近转向了神经网状自动编码器。尽管它们比传统方法表现出更高的精度,但仍无法捕获细粒的变形。此外,这些方法只能应用于模板特异性的表面网格,并且不适用于更通用的网格,例如四面体和非manifold网格。尽管可以采用更多一般的图形卷积方法,但它们缺乏重建精度的性能,需要更高的内存使用。在本文中,我们建议使用任意注册的网格数据的非网板特定的完全卷积网状自动编码器。它是由我们新颖的卷积和(联合国)合并运算符以全球共享权重和局部变化的系数学到的,可以有效地捕获不规则网格连接所呈现的空间变化内容。我们的模型优于重建精度的最先进方法。此外,由于完全卷积的结构,我们网络的潜在代码是完全局部的,因此比许多传统的3D网格生成模型具有更高的插值能力。

Learning latent representations of registered meshes is useful for many 3D tasks. Techniques have recently shifted to neural mesh autoencoders. Although they demonstrate higher precision than traditional methods, they remain unable to capture fine-grained deformations. Furthermore, these methods can only be applied to a template-specific surface mesh, and is not applicable to more general meshes, like tetrahedrons and non-manifold meshes. While more general graph convolution methods can be employed, they lack performance in reconstruction precision and require higher memory usage. In this paper, we propose a non-template-specific fully convolutional mesh autoencoder for arbitrary registered mesh data. It is enabled by our novel convolution and (un)pooling operators learned with globally shared weights and locally varying coefficients which can efficiently capture the spatially varying contents presented by irregular mesh connections. Our model outperforms state-of-the-art methods on reconstruction accuracy. In addition, the latent codes of our network are fully localized thanks to the fully convolutional structure, and thus have much higher interpolation capability than many traditional 3D mesh generation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源