论文标题

同源性的Furuta-Ohta不变性的手术和切除

Surgery and Excision for Furuta-Ohta invariants on Homology $S^1 \times S^3$

论文作者

Ma, Langte

论文摘要

我们证明了手术配方和furuta-ohta不变的$λ_{fo} $的切除公式,在同源性$ s^1 \ times s^3 $上定义,该$提供了更多证据,以与Casson-Seiberg-seiberg-witter noftitter noftitter noftitter noftitter $λ_{sw} $。这些公式用于计算某些在$ 3 $ -MANIFOLDS下以绘图托里的映射托里的家族的$λ_{fo} $。在证据的过程中,我们在$ 4 $ - 同源性的$ 4 $ - manifolds $ h _*(d^2 \ times t^2; \ mathbb {z})$上完整描述了ASD Instantons的学位 - 零模量空间,并使用圆柱末端建立在$ [0,\ infty)\ times \ times times times t^$ t^3 $上。

We prove a surgery formula and an excision formula for the Furuta-Ohta invariant $λ_{FO}$ defined on homology $S^1 \times S^3$, which provides more evidence on its equivalence with the Casson-Seiberg-Witten invariant $λ_{SW}$. These formulae are applied to compute $λ_{FO}$ of certain families of manifolds obtained as mapping tori under diffeomorphisms of $3$-manifolds. In the course of the proof, we give a complete description of the degree-zero moduli space of ASD instantons on $4$-manifolds of homology $H_*(D^2 \times T^2; \mathbb{Z})$ with a cylindrical end modeled on $[0, \infty) \times T^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源