论文标题

磁场对局部变形电线的离散光谱的影响

Magnetic field influence on the discrete spectrum of locally deformed leaky wires

论文作者

Barseghyan, Diana, Exner, Pavel

论文摘要

我们考虑磁性schrödingeroperator $ h =(i \ nabla +a)^2-αδ_γ$,具有吸引人的单数相互作用,由分段平滑曲线$γ$支持,是直线的局部变形。磁场$ b $应该是非零和本地的。我们表明,基本频谱为$ [ - \frac14α^2,\ infty)$,对于具有笔直$γ$的非磁性运算符,并且证明了$ h $的离散频谱的足够条件,可以为空。

We consider magnetic Schrödinger operator $H=(i \nabla +A)^2-αδ_Γ$ with an attractive singular interaction supported by a piecewise smooth curve $Γ$ being a local deformation of a straight line. The magnetic field $B$ is supposed to be nonzero and local. We show that the essential spectrum is $[-\frac14α^2,\infty)$, as for the non-magnetic operator with a straight $Γ$, and demonstrate a sufficient condition for the discrete spectrum of $H$ to be empty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源