论文标题

使用计算机视觉,朝向大规模,自动化,准确检测CCTV摄像机对象。对隐私,安全性和网络安全的应用和影响。 (预印本)

Towards large-scale, automated, accurate detection of CCTV camera objects using computer vision. Applications and implications for privacy, safety, and cybersecurity. (Preprint)

论文作者

Turtiainen, Hannu, Costin, Andrei, Lahtinen, Tuomo, Sintonen, Lauri, Hamalainen, Timo

论文摘要

为了承受闭路电视摄像机和技术对隐私的不断增强的,必须存在提供隐私,安全性和网络安全功能的PAR CCTV感知解决方案。我们认为,朝着此类CCTV感知解决方案迈出的第一步必须是一个映射系统(例如Google Maps,OpenStreetMap),它提供了隐私,安全路由和导航选项。但是,这又要求映射系统包含有关CCTV摄像机确切地理位置,覆盖面积以及可能其他元数据的更新信息(例如,分辨率,面部识别功能,操作员)。但是,当前的映射系统缺少此类信息,并且有几种解决此问题的方法。一种解决方案是在地理位置标记的图像上执行CCTV摄像机检测,例如,在各种平台上的街道视图图像,在图像共享平台(例如Flickr)中公开发布的用户图像。不幸的是,据我们所知,没有用于CCTV摄像机对象检测的计算机视觉模型,也没有支持隐私和安全路由选项的映射系统。 为了解决这些差距,通过本文,我们介绍了CCTVCV - 第一个也是唯一的计算机视觉MS Coco兼容模型,能够在图像和视频帧中准确检测CCTV和视频监视摄像头。为此,我们的最佳检测器是使用8387张图像构建的,这些图像经过手动审查和注释,以包含10419 CCTV摄像机实例,并达到高达98.7%的精度。此外,我们构建和评估了多种模型,对其性能进行了全面比较,并概述了与此类研究相关的核心挑战。

In order to withstand the ever-increasing invasion of privacy by CCTV cameras and technologies, on par CCTV-aware solutions must exist that provide privacy, safety, and cybersecurity features. We argue that a first important step towards such CCTV-aware solutions must be a mapping system (e.g., Google Maps, OpenStreetMap) that provides both privacy and safety routing and navigation options. However, this in turn requires that the mapping system contains updated information on CCTV cameras' exact geo-location, coverage area, and possibly other meta-data (e.g., resolution, facial recognition features, operator). Such information is however missing from current mapping systems, and there are several ways to fix this. One solution is to perform CCTV camera detection on geo-location tagged images, e.g., street view imagery on various platforms, user images publicly posted in image sharing platforms such as Flickr. Unfortunately, to the best of our knowledge, there are no computer vision models for CCTV camera object detection as well as no mapping system that supports privacy and safety routing options. To close these gaps, with this paper we introduce CCTVCV -- the first and only computer vision MS COCO-compatible models that are able to accurately detect CCTV and video surveillance cameras in images and video frames. To this end, our best detectors were built using 8387 images that were manually reviewed and annotated to contain 10419 CCTV camera instances, and achieve an accuracy of up to 98.7%. Moreover, we build and evaluate multiple models, present a comprehensive comparison of their performance, and outline core challenges associated with such research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源