论文标题
基于注意力的深度学习框架,用于通过用户适应的人类活动识别
Attention-Based Deep Learning Framework for Human Activity Recognition with User Adaptation
论文作者
论文摘要
基于传感器的人类活动识别(HAR)需要根据传感器生成的时间序列数据来预测人员的作用。在过去的几年中,Har引起了重大兴趣,这要归功于现代无处不在的计算设备启用了大量应用程序。尽管已经提出了基于手工制作的功能工程的几种技术,但当前的最新技术由自动获得高级表示形式的深度学习体系结构表示,并使用复发性神经网络(RNN)来提取输入中的时间依赖性。 RNN有几个局限性,特别是在处理长期依赖方面。我们根据纯粹的基于注意力的机制提出了一个新颖的深度学习框架\ Algname,该框架克服了最先进的局限性。我们表明,我们提出的基于注意力的体系结构比以前的方法要强大,平均增量超过$ 7 \%$ $ $ $ $ $ $比以前的最佳性能模型。此外,我们考虑了个性化HAR深度学习模型的问题,这在几种应用中非常重要。我们提出了一种简单有效的基于转移学习的策略,以使模型适应特定用户,从而在该用户的预测中为F1分数提供平均$ 6 \%$。我们广泛的实验评估证明了我们提出的框架比当前的最新框架和用户适应技术的有效性要出色。
Sensor-based human activity recognition (HAR) requires to predict the action of a person based on sensor-generated time series data. HAR has attracted major interest in the past few years, thanks to the large number of applications enabled by modern ubiquitous computing devices. While several techniques based on hand-crafted feature engineering have been proposed, the current state-of-the-art is represented by deep learning architectures that automatically obtain high level representations and that use recurrent neural networks (RNNs) to extract temporal dependencies in the input. RNNs have several limitations, in particular in dealing with long-term dependencies. We propose a novel deep learning framework, \algname, based on a purely attention-based mechanism, that overcomes the limitations of the state-of-the-art. We show that our proposed attention-based architecture is considerably more powerful than previous approaches, with an average increment, of more than $7\%$ on the F1 score over the previous best performing model. Furthermore, we consider the problem of personalizing HAR deep learning models, which is of great importance in several applications. We propose a simple and effective transfer-learning based strategy to adapt a model to a specific user, providing an average increment of $6\%$ on the F1 score on the predictions for that user. Our extensive experimental evaluation proves the significantly superior capabilities of our proposed framework over the current state-of-the-art and the effectiveness of our user adaptation technique.