论文标题

胸部X射线疾病筛查的深挖矿外部不完美数据

Deep Mining External Imperfect Data for Chest X-ray Disease Screening

论文作者

Luo, Luyang, Yu, Lequan, Chen, Hao, Liu, Quande, Wang, Xi, Xu, Jiaqi, Heng, Pheng-Ann

论文摘要

深度学习方法在自动胸部X射线分析中表现出了显着的进展。深层模型的数据驱动功能需要培训数据才能涵盖大量分布。因此,整合来自多个数据集的知识是很重要的,尤其是对于医学图像。但是,学习具有额外胸部X射线(CXR)数据的疾病分类模型尚不具有挑战性。最近的研究表明,在不同CXR数据集的联合培训中存在性能瓶颈,很少有努力解决障碍。在本文中,我们认为合并外部CXR数据集会导致不完美的培训数据,从而增加了挑战。具体而言,不完美的数据分为两个折叠:域差异,因为图像的外观在数据集中各不相同;和标签差异,因为不同的数据集被部分标记。为此,我们根据类别制定了多标签胸部疾病分类问题作为加权的独立二进制任务。对于跨领域共享的常见类别,我们采用特定于任务的对抗训练来减轻特征差异。对于单个数据集中存在的类别,我们提出了模型预测的不确定性感知的时间结合,以进一步从缺失标签中挖掘信息。这样,我们的框架同时建模并解决了域和标签差异,从而实现了优越的知识挖掘能力。我们在三个具有360,000多个胸部X射线图像的数据集上进行了广泛的实验。我们的方法的表现优于其他竞争模型,并以0.8349 AUC设置了官方NIH测试集的最先进的性能,这表明了其利用外部数据集来改善内部分类的有效性。

Deep learning approaches have demonstrated remarkable progress in automatic Chest X-ray analysis. The data-driven feature of deep models requires training data to cover a large distribution. Therefore, it is substantial to integrate knowledge from multiple datasets, especially for medical images. However, learning a disease classification model with extra Chest X-ray (CXR) data is yet challenging. Recent researches have demonstrated that performance bottleneck exists in joint training on different CXR datasets, and few made efforts to address the obstacle. In this paper, we argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges. Specifically, the imperfect data is in two folds: domain discrepancy, as the image appearances vary across datasets; and label discrepancy, as different datasets are partially labeled. To this end, we formulate the multi-label thoracic disease classification problem as weighted independent binary tasks according to the categories. For common categories shared across domains, we adopt task-specific adversarial training to alleviate the feature differences. For categories existing in a single dataset, we present uncertainty-aware temporal ensembling of model predictions to mine the information from the missing labels further. In this way, our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability. We conduct extensive experiments on three datasets with more than 360,000 Chest X-ray images. Our method outperforms other competing models and sets state-of-the-art performance on the official NIH test set with 0.8349 AUC, demonstrating its effectiveness of utilizing the external dataset to improve the internal classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源